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Abstract
We present analytical calculations for the average value and the variance of the
number of peaks developing at the surface of 1 + 1 and 2 + 1 growing ballistic
deposits. Our results are compared with numerical simulations.

PACS numbers: 0550, 0510G, 0230J, 0250E

For about 50 years stochastic growth processes have been the focus of much work and interest
among physicists. Many different domains such as solid state physics and electrochemistry,
but also biology or polymer physics, are involved. An excellent review of this plentiful and
diversified activity is given in [1]. During recent decades, problems concerning the shape of
a randomly growing surface, especially its width, were more specifically addressed. Detailed
numerical studies, scaling relations and, finally, nonlinear stochastic partial differential
equations (the most famous one being the celebrated KPZ equation [2]) gave more and more
insight into the surface growth problem [3, 4]. In this paper, we will be concerned with the
number of peaks, η, appearing at the surface of a growing ballistic deposit. This problem
has already been addressed in a previous publication [5], where the average value 〈η〉 was
analytically obtained for a 1 + 1 ballistic growth model (BGM). However, we think that a more
precise knowledge of the η distribution would be desirable to improve our understanding of
the surface morphology. Now, a computation of the variance is still lacking (only an upper
bound for its asymptotic value was proposed in [6]). In this paper, we will show how such a
computation can be performed and also be extended to a 2 + 1 BGM.

Let us start with the 1+1 problem and specify our model [5]. We begin by taking n columns
of unit width each. The centres Ii (i = 1, . . . , n) of the columns form a one-dimensional lattice
we call (I). In the following, large n values and periodic boundary conditions will be understood.

Particles of unit height and of width slightly larger than one are successively dropped
in randomly chosen columns (with the same probability for all the columns). Assuming that
the particles are impenetrable, we define h(i, N) as the height of column i after dropping N

particles. The surface of the pile is determined by the function h(i, N). An event with n = 10
and N = 18 is depicted in figure 1(a).
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Figure 1. (a) The pile in the 1 + 1 BGM (an event is shown with n = 10 and N = 18). The peaks
appear in black. (b) The peaks of part (a) occupy sites on a one-dimensional lattice. Empty (k-)
sites are labelled with their number k of occupied neighbouring sites.

Two particles dropped in neighbouring columns cannot pass ‘through’ each other and the
change of h(j, N) when one extra particle is dropped in column j satisfies the following rule:

h(j, N + 1) = max{h(j − 1, N), h(j, N), h(j + 1, N)} + 1 (1)

or, equivalently

h(j, N + 1) = max
l∈J

h(l, N) + 1 (2)

where J is the set containing j and its nearest neighbours on lattice (I).
A highly rough surface with peaks and valleys develops in the course of particle dropping.

j is a peak at some time N if

h(j, N) > max{h(j − 1, N), h(j + 1, N)}. (3)

(In figure 1(a), peaks are shown in black.) Moreover, looking at the pile from above, we can
represent (as shown in figure 1(b)) each peak j by an occupied site j on lattice (I). Note that,
according to rule (1) two neighbouring sites cannot be occupied. Empty sites can have k = 0, 1
or 2 occupied neighbouring sites (see figure 1(b)). Let us call them k-sites. If mk and η are
respectively the number of k-sites and of occupied sites (or peaks), we can write the following
two relationships:

m0 + m1 + m2 = n − η (4)

m1 + 2 m2 = 2 η (5)

and, obviously

m0 − m2 = n − 3 η (6)

that will prove to be especially useful.
In the following, we will be mainly interested in the computation of the average value,

〈η〉, and of the variance, var η. Nevertheless, we will see that the latter requires the knowledge
of 〈mk〉.

For the moment, let us focus on the variation �η when we add one particle (N → N + 1).
Thinking of the rule (1) and also of the definition (3), we see that three possibilities can occur:
�η = 0, ±1. For instance, dropping the particle in a column without neighbouring peaks will
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Figure 2. The average value 〈η′〉 of the number of peaks as a function of N ′(≡N/n): (a) 1 + 1
case (points, numerical simulations, 20 000 events with n = 1000; curve, equation (12)) (b) 2 + 1
case (points, numerical simulations, 50 000 events with n = 80 000; curve, equation (33)).

create a new peak, so �η = +1. A rapid inspection allows us to write the following recursion
relations:

η → η + 1 with probability
m0

n
(7)

η → η with probability
m1 + η

n
(8)

η → η − 1 with probability
m2

n
. (9)

Averaging over all possible events, we obtain

�〈η〉 =
〈
m0 − m2

n

〉
= 1 − 3

〈η〉
n

. (10)

With the rescaled variables N ′ ≡ N/n, η′ ≡ η/n, m′
k ≡ mk/n, we obtain, in the limit of large

n,

d〈η′〉
dN ′ = 1 − 3 〈η′〉 (11)

leading to

〈η′〉 = 1
3 (1 − e−3N ′

). (12)

This result, already obtained by another method in [5], is compared with simulations in
figure 2(a). It shows that, asymptotically, about one-third of the columns are peaks. So,
the surface of the pile is highly irregular.

For the variance of η, we return to equations (7)–(9) and consider the variation of η2:

�〈η2〉 = 1

n
〈(η + 1)2m0 + (η)2(m1 + η) + (η − 1)2m2〉 − 〈η2〉 (13)

= 2

n
〈η(n − 3 η)〉 +

1

n
〈m0 + m2〉. (14)

With

�〈η〉2 = 2〈η〉�〈η〉 + (�〈η〉)2 (15)
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Figure 3. (a) The three ways of destroying a 0-site; if we drop the extra particle (i) in the middle
column marked with a cross, then the 0-site is changed into an occupied site, (ii) in the right or
left column marked with a cross, then the 0-site is changed into a 1-site. (b) The only one way of
creating a 0-site (transformation of a 1- into a 0-site).

we obtain the following differential equation for the variance:

d var η′

dN ′ = −6 var η′ +
1

n
〈m′

0 + m′
2〉 − 1

n
(1 − 3〈η′〉)2. (16)

So, we are left with the computation of 〈m′
0 + m′

2〉.
Let us study the variation of mk when N → N + 1. Figure 3 shows how things go for m0.
We see that a given 0-site (labelled by an arrow in figure 3(a)) can be destroyed in three

ways (if we drop a particle in one of the three columns labelled by a cross). On the other hand,
a 1-site can be transformed into a 0-site (see figure 3(b)), only one possibility). So, we deduce

�〈m0〉 = 1

n
〈 −3 m0 + m1 〉. (17)

In the same way, we obtain

�〈m1〉 = 1

n
〈 2 η + 2 m0 − 3 m1 + 2 m2 〉 = 1

n
〈 2 m0 − 2 m1 + 4 m2 〉 (18)

�〈m2〉 = 1

n
〈 m1 − 3 m2 〉. (19)

It is easy to check that

�〈m0〉 + �〈m1〉 + �〈m2〉 = − �〈η〉 (20)

�〈m1〉 + 2 �〈m2〉 = 2 �〈η〉 (21)

in agreement with equations (4), (5).
Introducing the 3-vector m′ of components m′

0, m′
1 and m′

2, equations (17)–(19) lead to
the following set of differential equations:

d〈m′〉
dN ′ = A〈m′〉 (22)

where A is a (3 × 3) matrix:

A =
(−3 1 0

2 −2 4
0 1 −3

)
.

Solving (22) with the initial conditions m′
0 = 1, m′

1 = m′
2 = 0 at N ′ = 0, we obtain

〈m′
0〉 = 1

15 (2 + 10 e−3N ′
+ 3 e−5N ′

) (23)

〈m′
1〉 = 2

5 (1 − e−5N ′
) (24)

〈m′
2〉 = 1

15 (2 − 5 e−3N ′
+ 3 e−5N ′

). (25)
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Figure 4. For the 1 + 1 BGM, the average value of the number of k-sites m′
k , k = 0, 1, 2,

as a function of N ′ (points, numerical simulations, 20 000 events with n = 1000; full curves,
equations (23)–(25)). For further explanations, see the text.
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Figure 5. For the 1 + 1 BGM, the variance of η′ (multiplied by n) as a function of N ′ (points,
numerical simulations, 20 000 events with n = 1000; full curve, equation (26)).

Returning to equation (16), we obtain for the variance

var η′ = 1

45n
(2 + 5 e−3N ′

+ 18 e−5N ′ − (45 N ′ + 25)e−6N ′
) (26)

→ 2

45n
when N ′ → ∞. (27)

We conclude that, for large n values, the distribution of η′ is practically a δ function.
All these results are shown to agree quite well with our computer simulations (see figures 4

and 5). Note that the variance exhibits a maximum for N ′ ≈ 0.7 i.e. when the system is not
completely ‘filled’.

Now, we show how the previous basic idea can be applied to a 2 + 1 BGM. Let us consider
hexagonal columns (the horizontal section of a given column is a regular hexagon H). The new
lattice (I) (centres of the column bases) is, this time, triangular. Impenetrable particles of unit
height and size slightly larger than H are dropped in randomly chosen columns. So, we keep



1964 J Desbois

0

2a2a

2a

2b

1
1

1

1
1

1
1

1
1

1
1

1
1

3

0
0 0 0

0
0

0

0
0

0
00

0

0

0

0

0
Figure 6. The two-dimensional analogue of figure 1(b). The
occupied sites (peaks) are black hexagonal cells. Empty cells
are labelled with their number of neighbouring occupied cells.
Note the peculiarities of the 2-cells. (For the sake of clarity, the
underlying triangular lattice (I) is not shown.)

the same actualization rule, equation (2). As before, j is a peak if

h(j, N) > max
l∈J ∗

h(l, N) (28)

where J ∗ is the set of nearest neighbours of j on lattice (I).
The peaks are now represented by occupied cells, the centres of which belong to the

triangular lattice (I). An event is depicted in figure 6, where the pile is seen from above (the
peaks are shown in black). Empty cells can have k = 0, 1, 2 or 3 occupied neighbouring cells.
It is worthwhile to notice that the 2-sites can appear in two topologically different situations
(2a and 2b). With the same notations as before (n, total number of columns; mk , number of
k-sites, m2 ≡ m2a + m2b), the relations (4), (5) become

m0 + m1 + m2 + m3 = n − η (29)

m1 + 2 m2 + 3 m3 = 6 η. (30)

The variation of η when N → N + 1 is still given by (7)–(9) except for adding the new
possibility

η → η − 2 with probability
m3

n
. (31)

Now, it is easy to write

�〈η〉 = 1 − 7
〈η〉
n

(32)

〈η′〉 = 1
7 (1 − e−7N ′

). (33)

(A comparison of this result with a numerical simulation is made in figure 2(b).)
Straightforward algebra leads to the following equation for the variance:

d var η′

dN ′ = −14 var η′ +
1

n
〈m′

0 + m′
2 + 4 m′

3〉 − 1

n
(1 − 7〈η′〉)2. (34)

To compute the average values 〈m′
k〉, we must first write the recursion relations. This is done

by splitting m′
2 into m′

2a and m′
2b and introducing the 5-vector m′ of components m′

0, m′
1, m′

2a ,
m′

2b and m′
3. Close inspection leads to

d〈m′〉
dN ′ = B〈m′〉 (35)

with the (5 × 5) B matrix

B =




−7 3 0 0 0
6 −6 9 8 3
0 2 −11 4 9
0 1 2 −11 3
0 0 1 0 −13


 .
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Figure 7. The same as figure 5 but for the 2 + 1 BGM (full curve, equation (36); points, numerical
simulations, 50 000 events with n = 80 000).

(Note that we will not obtain such linear relations if we do not split m′
2.)

It is easy to check that (35) is consistent with (29) and (30).
Solving equations (35) and (34), we obtain the variance expression:

var η′ = 1

n

(
19

637
+

e−7N ′

245
+

e−12N ′

5
+

2 e−13N ′

13
−
(

N ′ +
247

637

)
e−14N ′

)
. (36)

This last result is displayed in figure 7.
We observe that, for both models (1 + 1 and 2 + 1), the quantities 〈η′〉 and n · var η′ are

only functions of N ′ (≡N/n). Let us check that this is still true if we change the shape of the
columns in the 2 + 1 model (provided that we keep the same rules (2) and (28)).

For instance, for a lattice (I) of coordination z, we will obtain analytically

〈η′〉 = 1

z + 1
(1 − e−(z+1)N ′

) (37)

d var η′

dN ′ = −2 (z + 1) var η′ +
1

n

〈 ∞∑
k=0

(k − 1)2m′
k

〉
− 1

n
(1 − (z + 1)〈η′〉)2. (38)

(Of course, the series on the right-hand side only contains a finite number of terms.)
〈m′

k〉 is obtained by solving a linear differential equation of type (35). Obviously, the
B matrix depends on the lattice (I). In particular, its dimension is determined by topological
considerations as previously discussed.

Nevertheless, this is enough to convince oneself that the quantity n·var η′, solution of (38),
is only a function of N ′. Note that the asymptotic value (N ′ → ∞) is easily obtained from (38):

n var η′ = 1

2 (z + 1)

( ∞∑
k=0

(k − 1)2〈m′
k〉
)

(39)

〈m′
k〉 being taken at N ′ = ∞.

In summary, we have computed the surface peak distribution for the 1+1 and 2+1 BGMs.
Note that the local minima on the surface have the same distribution as the peaks in the 1 + 1
BGM (the numbers of local minima and peaks are the same in that case). However, for the
2 + 1 BGM, the study of local minima requires more elaborate considerations. It would also be
fine to study along the same lines more fundamental properties of growing surfaces such as,
for instance, the roughness or the mean height of the pile. Unfortunately, the surface width is
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related to the depth of the valleys and we rapidly realize that an exact treatment leads to highly
nonlinear coupled equations (the same problem for the mean height). Can those equations be
simplified in some limiting cases? This is still an open question that is far beyond the scope
of this paper.
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